Pattern Generation for Complex Data Using Hybrid Mining
نویسندگان
چکیده
Combined mining is a hybrid mining approach for mining informative patterns from single or multiple data-sources, multiple-features extraction and applying multiple-methods as per the requirements. Data mining applications often involve complex data like multiple heterogeneous data sources, different user preference and create decision-making actions. The complete useful information may not be obtained by using single data mining method in the form of informative patterns as that would consume more time and space. This paper implements hybrid or combined mining approach that applies Lossy-counting algorithm on each data-source to get the frequent data item-sets and then generates the combined association rules. Applying multi-feature approach, we generate incremental pair patterns and incremental cluster patterns. In multi-method combined mining approach, FP-growth and Bayesian Belief Network are combined to generate classifier to get more informative knowledge. This paper uses two different data-sets to get more useful knowledge and compare the results.
منابع مشابه
Estimation of geochemical elements using a hybrid neural network-Gustafson-Kessel algorithm
Bearing in mind that lack of data is a common problem in the study of porphyry copper mining exploration, our goal was set to identify the hidden patterns within the data and to extend the information to the data-less areas. To do this, the combination of pattern recognition techniques has been used. In this work, multi-layer neural network was used to estimate the concentration of geochemical ...
متن کاملHybrid Technique for Frequent Pattern Extraction from Sequential Database
Data mining has became a familiar tool for mining stored value from the large scale databases that are known as Sequential Database. These databases has large number of itemsets that can arrive frequently and sequentially, it can also predict the users behaviors. The evaluation of user behavior is done by using Sequential pattern mining where the frequent patterns extracted with several limitat...
متن کاملA Recent Review on XML data mining and FFP
The goal of data mining is to extract or mine" knowledge from large amounts of data. Emerging technologies of semi-structured data have attracted wide attention of networks, e-commerce, information retrieval and databases.XML has become very popular for representing semi structured data and a standard for data exchange over the web. Mining XML data from the web is becoming increasingly importan...
متن کاملElectricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average
Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...
متن کاملPrediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit
In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and blind mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a ...
متن کامل